

Hydrogen and LNG Liquefaction Technology

Introduction

Core Innovations

- 2 Patents in Liquid Hydrogen (LH₂) & LNG Liquefaction
- Proprietary Twin Turbo expander Reverse Brayton cycle

Superior Efficiency

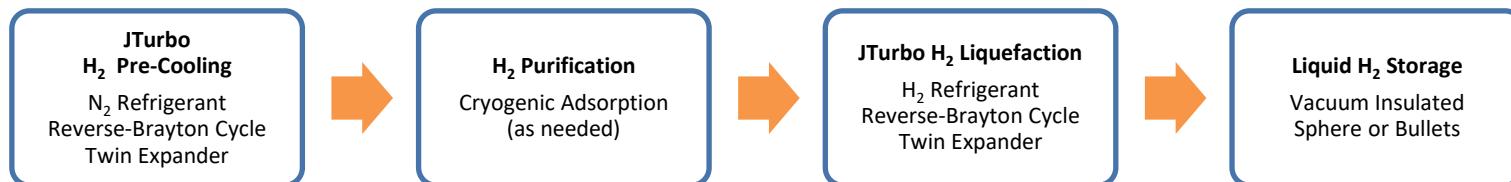
- Lowest Specific Energy Consumption (SEC) in the market
- Performance near theoretical thermodynamic efficiency

Global Reach

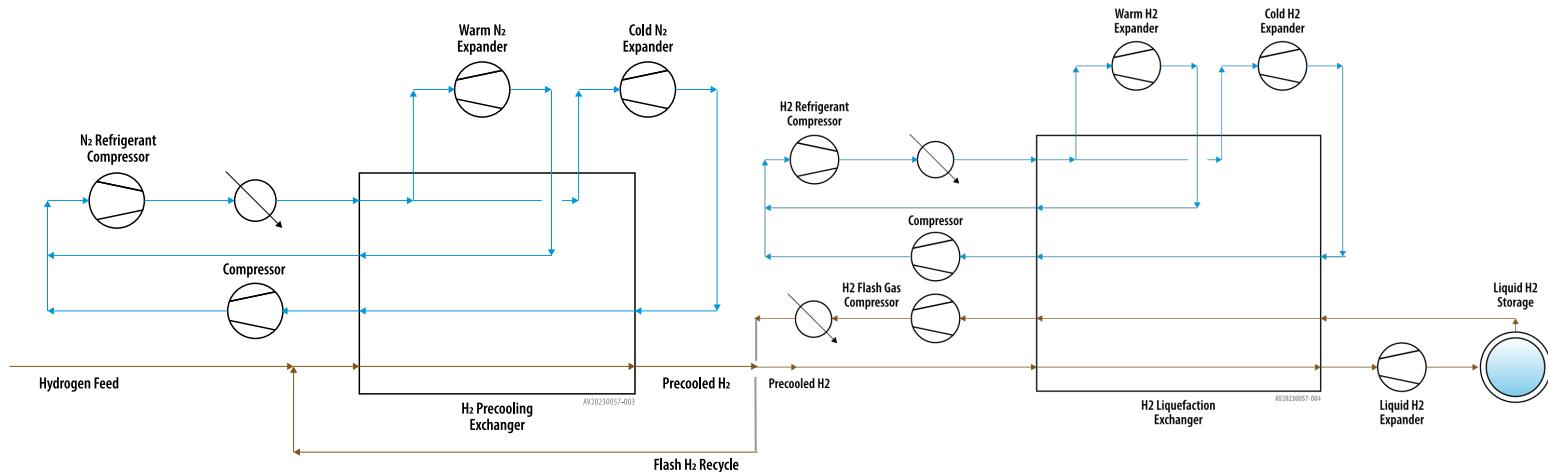
- Clients across USA, EU, India, Africa, Australia & Middle East

Applications

- Green Hydrogen Liquefaction
- Green Ammonia & Methanol Production
- Industrial Decarbonization (e.g., Data Centers, Steel)


Strategic Advantage

- Ultra-efficient liquefaction tech enabling cost-effective liquid hydrogen
- storage & large-scale clean energy solutions for Industrial Applications
- (Ammonia, Steel, Refinery, Chemicals ...)


JTurbo Hydrogen Liquefaction Technology

Lowest Specific Energy Consumption in Hydrogen Liquefaction

- **Industry-Leading Efficiency**
 - Lowest Specific Energy Consumption (SEC) [kWh/kg LH₂]
 - **50% lower SEC** compared to current liquefaction technologies
- **Proven Thermodynamic Foundation**
 - H₂ Precooling & Liquefaction: Reverse-Brayton cycles
 - Built on established cycles & equipment technologies
- **High-Efficiency Equipment**
 - Twin expanders, plate-fin heat exchangers, refrigerant compressors
 - Sourced from reliable, established vendors
- **Flexible Refrigerant Options**
 - Primary: Nitrogen & Hydrogen
 - Alternatives (no loss of efficiency): H₂+Helium, H₂+ Neon mix

JTurbo Hydrogen Liquefaction Technology

Highly Efficient Design with Proven Elements (Stages 1 and 2)

- Closed-Loop N₂ and H₂ Refrigeration Cycle**
 - Reverse-Brayton thermodynamic cycle
 - Single and multiple Turbo-expanders for high efficiency
- Flexible Refrigerant Options**
 - Primary: Nitrogen & Hydrogen
 - Alternatives: Nitrogen & Helium or H₂+Neon mix
- CAPEX & OPEX Reduction ($\approx 30\%$)**
 - Integration with - LNG Terminal & LN₂ Air Separation units

- Proven Equipment**
 - Turbo Expander-compressor design
 - Plate-fin heat exchanger technology
 - Established refrigerant compressor design
- Efficiency Enhancements**
 - Water-cooling for final heat rejection
 - Efficiency depends on heat sink for ambient cooling

Current H₂ Liquefaction Technology Comparison

Comparison SEC for existing plants and JT Turbo Liquefaction Technology using a consistent design basis

Current Hydrogen Liquefaction Technology and Proposed New Developments					
Technology	Status	Pre-cooling Cycle	Liquefaction & Sub-cooling Cycle	Specific Energy Consumption (SEC) kWh/kg	Exergy Efficiency (%)
Linde–Ingolstadt	Operating	LN2	H ₂ - Claude	13.60	28.82
Linde–Leuna	Operating	LN2	H ₂ - Claude	11.90	32.94
Air Products	6 × operating	LN2	H - Claude	12 - 15	33 - 26
Praxair	4 × operating	LN2	H ₂ - Claude	12.5 - 15	31 - 26
Air Liquide	5 × operating	LN2	H ₂ - Claude	12 - 15	33 - 26
Patent No. US 11,391,511 B1	N2 - Reverse Brayton	He - Reverse Brayton	5.35	73.22	
		H2 - Reverse Brayton	5.29	74.10	
		H2+Ne - Reverse Brayton	5.20	75.46	
		LN2 / LNG	H ₂ - Reverse Brayton	3.6 / 4.5	108 / 87

Notes:

1. H₂ Plant Feed Gas & Liquefaction Pressure @ 1160 psi (80 bar) and H₂ Storage @ 14.5 psi (1.0 bar)
2. Specific Energy Consumption (SEC) does not include a constant value of 527 kJ/kg, Ortho-Para H₂ Conversion (OPC) heat duty for consistency with other Technologies that has not been included in the published SEC.

JTurbo Hydrogen Liquefaction Technology

JTurbo Hydrogen Liquefaction Technology Summary

Hydrogen Liquéfaction & Réfrigération Summary (Average Ambient Température 25 °C)					
Pre-Cooling Cycle	Twin-Exp N ₂ ⁽¹⁾ (1+1) Cycle	Twin-Exp N ₂ ⁽²⁾ (1+1) Cycle	Twin-Exp N ₂ ⁽³⁾ (1+1) Cycle	LNG ⁽⁴⁾	LN ₂ ⁽⁵⁾
Liquefaction & Subcooling Refrigeration Cycle *	Twin-Exp H ₂ (1+1) Cycle	Twin-Exp H ₂ (2+1) Cycle	Twin-Exp H ₂ (3+2) Cycle	Twin-Exp H ₂ (3+2) Cycle	Twin-Exp H ₂ (3+2) Cycle
Hydrogen Feed Gas (Nm ³ /h)	23,168	46,331	69,491	69,491	69,491
Liquid Hydrogen Loading (ton/day)	50	100	150	150	150
Specific Energy Consumption (kWh/kg)	6.8	6.0	5.7	4.5	3.6
Exergy Efficiency (%)	57.4	65.3	68.5	87.0	108.0
Total Power (kWh)	14,235	25,011	35,799	28,402	22,722
Total CAPEX (US \$ / kg LH ₂ / Day)	1,300	900	800	650	600

Notes

⁽¹⁾ Twin-Exp JT Turbo N₂ / H₂ (1+1) Exp H₂ Cycle: Twin-Exp JT Turbo Nitrogen Precooling and H₂ (1+1) Exp Cycle H₂ Liquefaction

⁽²⁾ Twin-Exp JT Turbo N₂ / H₂ (2+1) Exp H₂ Cycle: Twin-Exp JT Turbo Nitrogen Precooling and H₂ (2+1) Exp Cycle H₂ Liquefaction

⁽³⁾ Twin-Exp JT Turbo N₂ / H₂ (3+2) Exp H₂ Cycle: Twin-Exp JT Turbo Nitrogen Precooling and H₂ (3+2) Exp Cycle H₂ Liquefaction

⁽⁴⁾ LNG / H₂ (3+2) Exp H₂ Cycle: Twin-Exp JT Turbo LNG Precooling and H₂ (3+2) Exp Cycle H₂ Liquefaction

⁽⁵⁾ LN₂ / H₂ (2+1) Exp H₂ Cycle: Twin-Exp JT Turbo LN2 Precooling and H₂ (2+1) Exp Cycle H₂
Liquefaction

* H₂ Feed Gas from H₂ Storage & H₂ Liquefaction @ 580 psig (40 bar) and H₂ Storage @ - 418.4 °F (-250 °C) and 29 psig (2 bar)

Current H₂ Liquifaction Industry Status

Challenges

- Outdated technology (based on decades-old designs)
- Limited efficiency & scalability improvements
- Lack of R&D investment & cryogenic expertise
- Inefficiencies at scale – viable only for ≤30 TPD setups

New Challenge : Renewables

- Intermittent solar & wind → energy volatility
- Grid limitations restrict continuous H₂ production

Opportunity

- Liquid Hydrogen storage as an energy buffer
- JTurbo uniquely positioned to enable large-scale (50-150 TPD) liquefaction

Liquid Hydrogen as Power & Cold Energy Buffer

- **LH₂ Handling:** Liquefy and Store hydrogen with renewable energy; use during unavailability
- **LN₂ Handling:** Recovered cold energy from LH₂ vaporization for producing LN₂ to be used later in hydrogen precooling cycle
- **Optimized ASU Operation**
- **Nighttime GAN:** Meets Industrial demand(Ammonia, Steel, Refinery, Chemicals ...) + recovers cold energy
- **Daytime GAN:** Covers above Industrial demand, deducts LN₂-derived GAN
- **Key Advantages**
- No loss of cold energy → lower OPEX
- Liquid Hydrogen as storage buffer = highly cost-effective

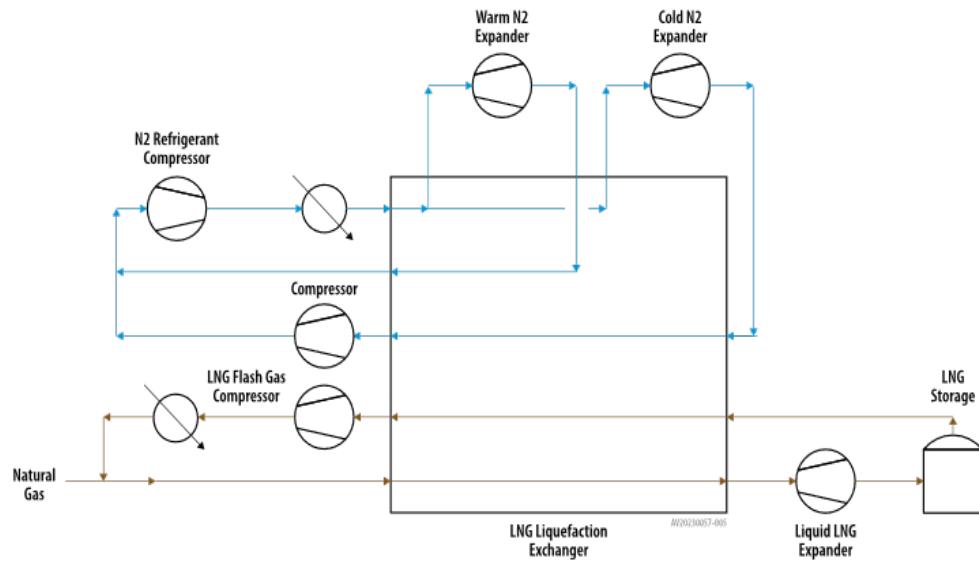
Advantages of Twin Turboexpander Cycle

Efficiency & Energy Savings

- SEC: 5.2 kWh/kg LH₂ vs. 11+ industry standard → >50% savings

CAPEX Advantage

- \$800–1300 per kg LH₂/day at 50–150 TPD scale
- Industry: \$2500+ per kg LH₂/day
- ~50% lower capital cost


Proven Technology

- Backed by OEMs Performance Guarantees
- Submitted proposals to license several LH₂ units with key partners across the U.S., Middle East, India, Africa, Europe, and Australia—powering cleaner mobility and high-value industrial applications

JTurbo LNG Liquefaction Technology

Highly Efficient Design, Proven Elements

- Reverse-Brayton thermodynamic refrigeration cycle
 - Twin turbo-expanders for high efficiency
- Demonstrated plate-fin heat exchanger technology
- Established refrigerant compressor design
- Water or air-cooling for final heat rejection
- Efficiency depends on available ambient heat sink

LNG Liquefaction Cycle Current Technology

JTurbo's Twin Expander Nitrogen Cycle LNG Liquefaction Technology as an SMR-free system that uses **pure nitrogen** as the refrigerant. Nitrogen expander cycles are indeed common for **small to mid-scale** LNG / Bio-LNG, and floating LNG (FLNG) and **modular LNG plants** because of their lower cost, simplicity, safety, and environmental friendliness (no hydrocarbon refrigerants).

Current LNG Liquefaction Technology Comparison				
Licensor Technology	LNG Liquefaction Cycle	Maximum Capacity per LNG Train (TPD)	Specific Refrigerant Power (SRP) kWh / ton LNG	Notes
Air Products (APCI)	SMR / C ₃ MR / DMR	Base Load	270 - 300	Used for large base-load LNG. Highest efficiency but complex system.
	Dual N ₂ Expander	1,000 – 1,500	500 - 650	Simpler, scalable, but lower efficiency than MR system
Linde	Dual N ₂ Expander	1,000 – 1,500	500 - 650	Compact modular designs available. Lower efficiency but robust
Black & Veatch (PRICO)	Dual N ₂ Expander	1,000 – 2,000	500 - 650	Used in small FLNG and distributed LNG. Low maintenance
Chart (IPSMR) N ₂	Dual N ₂ Expander	1,200 – 1,800	500 - 650	Integrated power recovery; good for small-scale LNG.
US Patent 12.181.214	Twin N ₂ Expander	50 - 3,000	300	Higher efficiency than conventional N ₂ expanders; performance approaching MR efficiency. Modular and scalable for 50–3,000 TPD.

50 - 3,000 TPD LNG & Bio-LNG Liquefaction

Why N₂ Expander Cycle?

- Safe & Simple: Pure nitrogen, inert & non-flammable → no hydrocarbon risk
- Compact & Modular: Ideal for space-limited platforms/vessels; skid-mounted design
- Flexible Operation: Handles variable gas, rapid start/stop for intermittent use
- Lower CAPEX: Fewer equipment, simpler process → \$400 ton LNG vs. >\$800 for mixed refrigerant cycles
- Backed by OEMs Performance Guarantees

50 - 3,000 TPD LNG & Bio-LNG Liquefaction

Commercial Examples

- EXMAR Caribbean FLNG: 0.5 MTPA, nitrogen expander cycle (PRICO-N₂)
- PFLNG Satu (Petronas): First FLNG (dual mixed refrigerant); smaller FLNGs <1 MTPA often use N₂ cycles
- Black & Veatch PRICO-N₂: Widely adopted in small FLNG, barge, and peak shaving units (100–200 tpd / 0.05–0.1 MTA)

Conclusion

- JTurbo N₂ Expander Cycle = safe, efficient, compact LNG solution
- Ideal for modular LNG, Bio-LNG & offshore projects
- Delivers low CAPEX + fast deployment

JTurbo's Execution Approach

JTURBO: PRODUCTIZING MOST ENERGY EFFICIENT HYDROGEN & LNG LIQUEFACTION TECHNOLOGY

JTurbo licenses and delivers the liquefaction technology including the material balance, process flowsheet, and critical specifications.

JTurbo engages Top-tier EPC firm to complete and deliver an appropriately detailed Process Design Package (PDP) or Front-End Engineering Design Package (FEED) based on project needs.

This execution approach brings state-of-the-art technology together with quality engineering to deliver cost-effective, efficient, and reliable hydrogen liquefaction technologies.

Contact Information

For additional information, please contact

Jacob Thomas

JTurbo Engineering and Technology LLC

Houston, Texas, U.S.A

O: + 1. 713.838.2375

M: + 1. 281.851.9598

E: JThomas@JTurboengineering.com

E: Inquiries@JTurboengineering.com

www.JTurboengineering.com